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ABSTRACT

Automatic and robust partitioning of indoor 3D point
clouds into rooms is a central requirement for emerging ap-
plications such as indoor navigation or facility management.
Existing works are either based on the Manhattan-world as-
sumption or rely on the availability of the scanner pose in-
formation. Instead, we follow the architectural definition of
a room and consider it as an inner free space separated from
other spaces through openings or partitions. For this we for-
mulate an anisotropic potential field for 3D environments and
illustrate how it can be used for room segmentation in the
proposed segmentation pipeline. The experimental results
confirm that our method outperforms state-of-the-art meth-
ods on a number of datasets including those that violate the
Manhattan-world assumption.

Index Terms— Room segmentation, indoor reconstruc-
tion, point cloud, unsupervised clustering

1. INTRODUCTION

Indoor reconstruction is becoming an increasingly important
topic because of the need for automatically generated seman-
tic models of buildings from 3D data. Potential applications
include architecture, civil engineering, facility management,
indoor mapping and navigation. Prior to further processing
it is important to partition the data into semantically mean-
ingful parts, which is normally done by segmenting building
point cloud data into rooms. This task is, however, made diffi-
cult by numerous factors, such as clutter, occlusion and large
volume of data. Previous work has partially addressed these
problems. In robotics, room segmentation has been mostly
done in occupancy grid maps [1], [2], which are heavily in-
fluenced by clutter and occlusion present in the indoor en-
vironment. In computer vision and graphics, the segmenta-
tion methods work on 3D point cloud data directly, but they
suffer from a number of limitations. The first limitation is
the assumption of precise knowledge of the sensor poses [3],
[4], [5]. Such information is highly specific to the used ac-
quisition sensor, therefore it is difficult to combine data from
multiple information sources (e.g. including RGBD and LI-
DAR scanners). It is also often the case that already available
CAD models are combined with partial scans of the environ-
ment. The second limitation includes a strong assumption on
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Fig. 1: Illustration of rooms as inner free spaces separated
by smaller openings. Top: side view of an indoor environ-
ment with two rooms separated with a smaller room (corri-
dor). Furniture is shown in brown, several free voxels with
potential field (PF) values are also shown. Bottom: top-down
view with proposed anisotropic PF maximum values along
the vertical stack. Red color corresponds to high PF values
and dark blue - to low.

Manhattan-world structure [6], [7], [5], [8]. Clearly, this is
not true for a general indoor environment exhibiting curved
walls and tilted ceilings.

To tackle this challenge, we review the definition of a
room. Due to absence of a strict mathematical formulation,
we refer to architectural context [9]. Here rooms are enclo-
sures or divisions separated from other divisions by partitions.
In other words, rooms are bigger (in volume) free spaces that
are connected to each other through a smaller (in volume) free
space, such as a door or an arch (see top part in Fig. 1). This
formulation follows the human understanding of a room hav-
ing a certain homogenous spatial volumetric signature within
its boundaries. To address this formulation, we present a way
to compute an anisotropic potential field for free space in 3D
that is robust to clutter and occlusion. We further show how
such representation can be used for room segmentation in a
general indoor scene. Our framework is evaluated qualita-
tively and quantitatively with real and synthetic data of mul-
tiple buildings.



Contributions of this paper are as follows:

1. Framework to compute interior free space without as-
suming knowledge of scanner poses or the Manhattan-
world structure of indoor environments.

2. 3D formulation of anisotropic potential field computa-
tion for free space that is robust to clutter and occlusion.

3. Room segmentation pipeline that makes no assump-
tions on the room layout.

2. RELATED WORK

Related work on room segmentation can be separated into
several areas.

Robotics. Most of the previous work in the area of
robotics deals with room segmentation in 2D data, in particu-
lar with occupancy grid maps captured with a robotic platform
[1], [2], [10]. However, it has been shown that the presence
of clutter and objects in the environment significantly deteri-
orates the performance of segmentation approaches, such as
Voronoi maps or distance transform [1]. Furthermore, the ap-
proaches of [2] and [10] require information on the sensor tra-
jectory as well as a significant amount of training data. This
limits the performance of such approaches for general scenes.

Computer vision and graphics. In the area of com-
puter vision and graphics, 3D room segmentation has been
addressed by [6], [7], [5], [8], [3], [4], [11]. Several of these
approaches assume geometric regularity and absence of oc-
clusion [6], which is rarely the case for an indoor environ-
ment. Other methods assume a Manhattan-world structure of
the building [7], [5], [8]. But in reality this assumption is of-
ten violated for buildings with tilted ceilings and curved walls.
A number of approaches further require the scan poses for ev-
ery point in the point cloud [3], [4], [5], [8]. In practice this
information can be difficult to obtain, because the 3D data is
often combined from multiple sources, such as RGBD and LI-
DAR scanners or CAD models. To the best of our knowledge,
the previous work has not fully addressed the definition of a
room as an enclosed free space within an indoor environment
that possesses a certain spatial signature.

3. METHODOLOGY

An overview of the proposed method is given in Fig. 2. We
operate on a 3D point cloud (a) and start with detecting inte-
rior free space (b). We further proceed with computing a 3D
anisotropic potential field (PF) for free voxels. Afterwards,
we perform maxima detection in the PF values of each ver-
tical voxel stack (c) and store the maximum value into a 2D
PF map (d). Given the PF image, we perform clustering using
information about the PF values as well as the visibility be-
tween voxels (e). Finally, we map the labeled free space back
to the 3D point cloud (f). As input data we use 3D point cloud

data acquired using either RGBD sensors [5], [7] or LIDAR
scanners [3]. We do not use RGB information for any of the
algorithms as geometry is sufficient for room segmentation.

3.1. Interior free space classification

Free vs. busy space classification. As a room encompasses
free space, we first need to recognize free space as compared
to busy space occupied by objects and architectural parts. For
this, we voxelize the entire space spanned by the bounding
box of the point cloud data. Each voxel that contains at least
one point will be labeled as busy, and free otherwise. Hence,
the voxels corresponding to furniture and other indoor objects
will initially be labeled as busy even though they represent the
inner volume of the room. As our goal is to reconstruct the
inner volume of rooms and compute its volumetric signature,
we are interested in labeling such voxels as free. [12] has
proposed an approach to classify voxels into free and busy
using volumetric graphcut. Unfortunately, this method re-
quires camera poses and such information is often not avail-
able. Therefore, we proceed differently and first apply binary
3D morphological operations along the vertical direction op-
erating on the grid occupancy (see top part in Fig. 1). In par-
ticular, we identify isolated busy voxels surrounded by free
voxels and subsequently label them as free. In essence, we de-
tect the following pattern along the vertical direction ”busy”-
”free”-”busy”-”free”-”busy”. The central busy voxels match-
ing such pattern will be labeled as free. Clearly, such voxel
operations on large-scale datasets can result in high computa-
tional complexity, therefore we choose a relatively large voxel
size, e.g. with a side length of 18cm. In order to further re-
duce complexity, we precompute the 3D coordinates of every
voxel and use a lookup table for neighbor search.

Interior vs. exterior free space classification. Now,
for the identified free space we need to classify it into inte-
rior (inside the building) and exterior (outside the building).
To identify interior space, [12] has proposed to check if the
free space is enclosed by busy space using visibility and to
further formulate it as a Markov Random Field (MRF) prob-
lem, which can be efficiently solved using graphcuts. Unfor-
tunately, performing such visibility checks in 3D for large-
scale point clouds would result in a prohibitively high com-
putational complexity. Instead, we check if this free voxel
is placed between two busy voxels (so called enclosing). To
keep computational complexity low, we do not check for en-
closing in all directions in 3D, but instead leverage the prop-
erties of large-scale point cloud datasets having limited and
small number of dominant directions. Thus, we perform en-
closing checks for every free voxel only along the main ba-
sis directions of the indoor environment. As we cannot as-
sume orthogonal axis-aligned environments, we estimate the
main directions in XYZ space using the Mixture of Manhat-
tan Frames algorithm [13]. It is essentially a formulation of
K-means clustering on a hypersphere that allows to estimate
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Fig. 2: Overview of the method.

dominant directions. It has an advantage as compared to the
principal component analysis, as it allows to estimate more
than three principal directions. Thus, we can efficiently pre-
compute directions along which we need to check for neigh-
boring busy voxels instead of performing costly geometric
checks in 3D space. Clearly, the level of occlusion is dif-
ferent in various parts of the indoor space due to the scanning
procedure. It has been commonly observed that upper parts
of the environment (e.g. ceiling and elevated parts) are less
likely to be occluded during the scanning procedure as com-
pared to the floor and lower parts of the environment [14].
Therefore, when accumulating evidence for a free voxel to be
exterior, we choose different weights for various directions of
enclosing. In particular, evidence is computed as follows:

E(v) = w1 · 1(z−) + w2 · 1(z+) + w3 · 1(z)+
+w4 · 1(dom1) + w5 · 1(dom2),

(1)

where 1(z−) is 1 in case this free voxel v has busy voxels
below along the z-axis, 1(z+) is 1 in case there are busy
voxels above along the z-axis, 1(z) is 1 in case there are
busy voxels above and below, 1(dom1) is 1 in case there are
busy voxels along both directions of the first dominant di-
rection dom1, which has been estimated using the Mixture
of Manhattan Frames method and typically lies in the hor-
izontal plane. Similarly, dom2 refers to the second domi-
nant direction that also lies in the horizontal plane. Here, we
choose higher weight for the case of busy voxels located be-
low as such voxels indicate higher probability of this space
being interior: w1 = 0.43. In contrast, the remaining weights
are set to w2 = w3 = w4 = w5 = 0.1425. Please note
that even though the number of dominant directions could be
greater than two, we have observed that two dominant direc-
tions suffice for the majority of the considered datasets. We
use E(v) as the data term for a MRF formulation in combi-
nation with the smoothness term E(l) = 0.6. This value has
been experimentally verified to obtain a proper regularization
of the indoor voxels, while still accurately following the com-
puted free space evidence. We further build a 6-neighborhood
connected graph spanning all free voxels. We then compute
the graphcut using the Boykov-Kolmogorov mincut algorithm
[15] in order to find interior free voxels.

3.2. Anisotropic potential field computation

Once the interior free space has been detected (see (b) in
Fig. 2), we can proceed with the room segmentation. So far
many voxels within the room volume have been labeled as
busy due to the presence of furniture and other objects. One
could separate indoor objects from architectural elements of
the building, but this remains a challenging problem in indoor
reconstruction [3], [4], [16]. Instead, we leverage the obser-
vation that PF-based approaches for path planning and room
segmentation have shown a good performance in the past for
2D scenarios [1]. The PF value of the free voxel is normally
defined as its distance to the closest busy voxel. Unfortu-
nately, a straightforward formulation of PF in 3D would result
in significant variations in its values due to clutter and indoor
objects, which have little in common with room boundaries
(see table and chair in top part of Fig. 1). Therefore, we in-
stead propose to perform nearest neighbor search in the half-
space spanning the positive z-direction. This way, every voxel
stores the L2-distance to the closest busy voxel lying in the
half-space spanning positive z values, so called anisotropic
potential field value.

Given the 3D PF map (see Fig. 2 (c)), one could formu-
late clustering as an MRF problem with the PF gradient as a
data term, thus enforcing smoothness. However, we have ob-
served that the maximum PF value along the vertical stack of
voxels is sufficient to detect disconnected components of the
rooms. This has the further advantages of low computational
complexity and ability to provide a simple visualization (see
lower part in Fig. 1). The resulting maximum values are now
stored in a 2D image, which is used for further processing (see
(d) in Fig. 2). In order to enhance robustness of the method,
we further perform visibility checks between voxels and store
1 in case the other voxel is visible from this one, and 0 other-
wise. The other voxel is visible if there are no busy voxels in
the ray direction starting from the first voxel and terminating
in the second voxel. Here, instead of performing visibility
checks for every voxel, we only do so for the highest free
voxel along the vertical stack. We have observed that due to
varying ceiling profile the visibility of the highest voxel car-
ries more information for space partitioning as compared to
including the voxel with the maximum PF value.



3.3. Clustering

Now, given the 2D PF map, we need to identify discontinu-
ities, as these indicate room boundaries. One could employ
Voronoi graphs combined with merging heuristics [1], but we
have observed that this would impose constraints on the room
layout and shape. Common methods for segmentation such
as spectral clustering, k-means and random walks suffer from
various limitations, such as clusters having similar number of
points or convex shapes. Similarly, graphcut algorithms suf-
fer from erroneous merging of smaller rooms into the neigh-
boring bigger ones. In contrast, density-based clustering al-
gorithms (e.g. DBSCAN) have an advantage as they do not
assume any specific cluster shape, but instead perform region
growing based on density. A further advantage of such al-
gorithms is that they can use a general distance metric, thus
being able to incorporate other distance measures besides Eu-
clidian space. However, DBSCAN is very sensitive to the
chosen value of the neighborhood radius. Therefore, we in-
stead choose its extension called HDBSCAN [17] that em-
ploys a new cluster stability measure in order to maximize
the overall stability of selected clusters.

Prior to clustering, we perform local maxima detection in
the 2D PF map in order to first find rooms of larger size. To
derive a threshold, we build a histogram of intensity values
and detect the density peak with largest value. Now we define
the distance matrix for the voxels as follows:

D = Dvis · wvis +Deucl · weucl +DPF · wPF , (2)

where Deucl is the euclidian distance between two voxel coor-
dinates. DPF is the difference of the PF values of two voxels.
Dvis is the distance between voxels p and q based on visibil-
ity computed as normalized hamming distance between their
visibility vectors [5]:

Dvis(p, q) =
dist(V (p), V (q))hamming∑

i Vi(p) +
∑

i Vi(q)
, (3)

where V (p) is the visibility vector of voxel p, such that
Vi(p) = 1, if voxel i is visible from voxel p, and 0 otherwise.
In order to take into account information on the PF difference
as well as visibility change within different parts of the envi-
ronment we choose the parameters as follows: wvis = 0.3,
weucl = 0.6, wPF = 0.1.

After clustering, there are a number of unlabeled points,
which remain after the thresholding operation. To label them,
we threshold the remaining unlabeled points to obtain local
maxima. The threshold is the lowest detected density max-
imum in the intensity histogram. Afterwards, we perform a
number of merging operations. For this, we use the previously
introduced distance in Eq. (2) to select the closest cluster for
merging for every point. In case the distance to the closest
cluster is too high, such points are assigned to a new cluster.

3.4. Mapping of free space labeling to busy space

Given the labeled 2D map (see Fig. 2), we need to propagate
the labeling onto 3D busy voxels. For this, we start with the
labeled voxel and propagate labeling onto unlabeled voxels
in the stack along the vertical direction. Afterwards, for each
busy voxel we find its nearest 10 neighboring free voxels with
labels. The most often occuring label of the labeled voxels
will indicate the labeling of the considered busy voxel.

4. EXPERIMENTAL RESULTS

4.1. Evaluation

We evaluate our approach using several datasets. In particular,
we use the large-scale dataset of [7] with labeled rooms span-
ning 4 buildings and counting in total 175 rooms. For qualita-
tive evaluation we further include the unlabeled dataset of [5].
Finally, we also verify the performance on the unlabeled laser
scanner dataset that violates the Manhattan-world assumption
as described in [3], i.e. exhibiting tilted ceilings and curved
walls. We do not vary any of the parameters of our algorithm
across the scenes.

The experimental results using our method along with the
method of [7] are given in Fig. 3. The quantitative evaluation
for this dataset is given in Table 1. Here due to unavailabil-
ity of the source code or the labeled data of the algorithm
from [7] we cannot use the Adjusted Rand Index (ARI) met-
ric as employed in [7], because this would result in the in-
consistent evaluation. In particular, because ARI operates on
points, it is biased towards larger rooms, e.g. it inadequately
measures incorrect labeling of smaller rooms. Therefore, we
instead count how many rooms have been erroneously labeled
(shown as red ellipses in Fig. 3). Such metric also allows for
a meaningful evaluation and can adequately represent algo-
rithm segmentation performance. One can observe in Fig. 3
that the approach in [7] does not perform well for the rooms
that are not aligned with main walls of the building. See an
example of this in the top part of Area 1, top part of Area 2
and right part of Area 3. Furthermore, smaller rooms are of-
ten erroneously merged into the neighboring bigger ones - see
top left and bottom parts in Area 1 and middle part of Area
2. In contrast, our approach does not assume the Manhattan-
world structure therefore is able to label such rooms correctly.
It still incorrectly labels several rooms due to irregularities in
the PF map. We want to point out that our evaluation is rather
conservative, because the dataset labeling [7] is inconsistent
across different buildings: in some buildings the corridor is
labeled in parts, while in others it is labeled as a whole.

We also show the results of room segmentation for a num-
ber of buildings that exhibit tilted ceilings and curved walls,
thus violating the Manhattan-world assumption - see Fig. 4.
One can see that our approach is able to peform on-par with
the method of [3], even though we make significantly less as-
sumptions (e.g. no scanner poses or do not rely on presence



Table 1: Room segmentation results on the dataset of [7].
Numbers in two right columns show the number of incor-
rectly labeled rooms. Lower values indicate better segmen-
tation performance.

Area Number of rooms Our Armeni [7]
1 44 2 8
2 40 10 12
3 23 5 7
5 68 7 13

Total 175 24 40

of planar regions).
We further show results for room segmentation on the

dataset of [5] in Fig. 5. One can observe that our approach
outperforms [5] in several places: we detect the room in the
top-right part of Office 1 and in the right part of Office 2. This
is in spite of the fact that we do not use the information about
scanner poses as compared to [5]. Furthermore, we are able
to segment parts of the outdoor space. The inability of [5]
to segment these correctly is due to the merging heuristics of
free space voxels which result in erroneous merging of two
rooms. We want to note that our approach does not perform
very well in the parts of the point cloud, where data is very
sparse. such as the left part of Apartment 1 or left part of Of-
fice 2 in Fig. 5. In such cases, the algorithm of [5] heavily
relies on the scanner pose information to discard such voxels
prior to segmentation.

4.2. Discussion

We have observed that for most environments the PF infor-
mation is the most important feature for clustering. Nonethe-
less, in certain cases, such as transitions between corridors
(like in the middle part of Area 1 in Fig. 3), it is important
to include visibility so as to detect changes of space signa-
ture. We further acknowledge that in some cases, as in the
case of detecting a long rectangular-shaped corridor, it can be
disadvantageous to use visibility for clustering. In contrast,
PF values become more important for such situations. Most
importantly, we believe that PF maps even without segmenta-
tion results can provide a good illustration of the room layout
which can be helpful for visual inspection by the human.

Limitations. Our segmentation approach does not yet
support multi-storey buildings. We would like to note that
most parts of the proposed pipeline as well as the proposed
PF formulation apply to general 3D scenes. The extension to
multi-storey buildings would foresee replacing the stack max-
ima operation with multimodal maxima detection and per-
forming clustering in 3D space instead of 2D. Another impor-
tant limitation is the moderate performance of our approach
on very sparse point cloud data with multiple holes. This can
be mitigated by extending the criteria of the interior space.

Fig. 3: Results for the large-scale dataset of [7]. From left to
right: ground truth, results of [7], our PF map, our labeling
result. Top row: Area 1, middle row: Area 2, bottom row:
Area 3. Here with red ellipses we denote erroneously labeled
rooms. See supplementary material for bigger figures.

Fig. 4: Results for the unlabeled dataset violating the
Manhattan-world assumption [3]. Top row: Modern, middle
row: Cottage, bottom row: Penthouse. Left: reconstruction
result of [3], middle: PF map, right: our result.



Fig. 5: Results for the unlabeled dataset of [5]. From left
to right: Office 1, Office 2, Apartment 1, Apartment 2. Top
row: results of [5], middle row: our PF map, bottom row: our
labeling result. See supplementary material for bigger figures.

5. CONCLUSION

We have presented a novel framework to compute interior free
space of indoor environments without assuming knowledge
of scanner poses or the Manhattan-world structure. Operating
on interior free space, we formulate a new anisotropic poten-
tial field for 3D environments that is robust to indoor clutter
and occlusion. We then show how it can be used for general
room segmentation without assuming any specific room lay-
out. Our approach outperforms state-of-the-art methods for a
number of datasets. Additionally, it is also applicable to new
data modalities, such as point clouds resulting from a combi-
nation of CAD-models and depth scanner data.
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